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General Geant4 Usage at JPL

A Mission support

A Instrument design for proposed missions with
high radiation environment
I Europa Clipper Mission
I 1o Volcanic Observer

A For the last year or so, our Geant4 usage has
been focused on simulating transients In
Imagers
I e.qg., fireflies in CCD
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Characterization of the Response to
Radiation of the APIC Camera

NASAG6s New Frontiers Home

Maria de Soria-Santacruz Pich, Insoo Jun, Ed Riedel, Wousik Kim, and Ryan Park
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- . AN Jet Propulsion Laboratory
M Ot I V a.t I O n ) California Institute of Technology

A The main science goal of the Advanced
Pointing Imaging Camera (APIC) is to
measure the tidal deformation of | o0 0 s
surface from images taken from multiple
spacecraft flybys. APIC is part of NASAG s
New Frontiers Homesteader Program.

A We studied AP | Ctiamsient noise (or
Af i roeyésponse saind compared it to the
camera requirements. Tests and simulations
were performed to retire all radiation risks.

A In this presentation we will show:

0 One example of firefly beam-Line tests of
detector




Jet Propulsion Laboratory
NIy California Institute of Technology

Firefly Beam-Line Tests of Detector

TESTS OVERVIEW:

A We performed @i f i r edettiory and proton beam tests of the CMOSIS
CMV20000 detector. The detector was mounted on a prototype driving board.

A Electron beam tests were performed at Brookhaven National Laboratory on
April 2016:

- Tests in vacuum with 45 MeV electron beam operated at 1.5 Hz
- The exposure time was 300 ms at 3 fps

- Total of 33 runs in different configurations: Two shielding materials (Al
and W-Cu) with different thicknesses, four beam charges, two
orientations

A Proton beam tests happened at the UC Davis Crocker Nuclear Laboratory on
June 2016:

- Tests in air with 64 MeV proton beam
- The exposure time was 50 ms at 1 fps

- Total of 29 runs in different configurations: Two shielding materials (Al
and W-Cu) of different thicknesses, three flux levels, two orientations
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Jet Propulsion Laboratory
NIy California Institute of Technology

Simulation

A We performed Monte Carlo radiation transport simulations using the Geant4
code of the experimental setup, and compared experimental and simulation
results

A The purpose of the tests was to benchmark radiation transport simulations
with mono-energetic beams to gain confidence on the predictive capability of
the tool(s) so that we can use them to design a camera capable of surviving
the mission expected environment and satisfying instrument requirements
without performing typically expensive and time-consuming tests in an actual
space-like environment

A Developed detailed CAD model of experimental setup using SolidWorks and
assigned materials using FASTRAD

A GDML input to Geant4 was carefully debugged

A Detector simulated as: Coverglass (SiO2, 0.7 mm) + vacuum gap (1.03 mm)
+ sensitive target (Si, studied the sensitivity to thickness) + substrate (Si, 0.72
mm)

A Included additional components to the board to study their secondary
generation, but the effect was found to be negligible

A Performed checks with simplified geometries as well as using TIGER
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Firefly Beam-Line Tests of Detector

Jet Propulsion Laboratory
California Institute of Technology

BNL Electron Beam-Line Tests and Simulations
W-Cu (trapezoidal) shielding

Camera box

......

Steel electronics shielding Translational stage

UC Davis Proton Beam-Line Tests and Simulations

Steel shield
(electronics)

W-Cu shield Camera box
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Firefly Beam-Line Tests of Detector

A Discrepancies were observed

bEtween test and SImUIatlon reSUItS: Run 5 - 6.6 mm W-Cu, 100 pC beam, forward orientation, 5 um

- The detector response presents an | | | ‘
unexpected behavior with
increasing beam flux in the 100 A
experimental data

- Significant discrepancies observed... s;
for highZ shielding materials 2
(tungsten) compared to aluminum < °]
shielding

- Discrepancies at low Digital
Numbers corresponding to
secondary generation

Geant4
Experiment rad
—-—-Threshold = 90 DN
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A Separatgest and simulation Digital Number

benchmarking efforts are currently Worst-case discrepancy between test and
in place to understand the issues simulations (W-Cu shield at 100 pC)
above
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| essond earned

A Testing is important to understand the detector
behavior when irradiated and the capability of
radiation transportools

A Simulation of detector behavior also requires deep
understanding of how the tool(s) treats radiation
transport, especially when secondary particles are
Important (e.g., thick shield

A Goodknowledgeot he detector ' s
geometrical/material makeup, driving electronics,
sources of potential dark noise, angeration is
essential to correctly interpret firefly test and
simulationresults
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Using the Galileo Sol@tate Instrument
(SSI) as a Sensor for the Higmergy
Electron Environment

Geant4 Space User’
April 2017
A. Carlton, MIT
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Project Overview

A Developing a method to use CCD imagers to
sense the higlenergy (>1 MeV electron)
environment by comparing detector noise to
charged particle transport simulations

A Supporting a graduate student thesis (A.
Carlton, MIT)
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Approach

A Use Galileo spacecraft Sefidate Imager (SSI) data
I Galileo has an energetic particle detector for validation

Geant4
& ; _ ; l l
ks Collect raw instrument frames (pictures) with | | Model full instrument (including shielding I
o radiation noise. I
: 0 | 4}
o
g I | Monte Carlo Transport simulations (Geantd) @11
= Process frames teemove targetobject and : : : S 3
= dark current. leaving onl giatiojnhits I of the full instrument (!nclud!ng shielding) | 2| |
c ’ g onia : under moneenergetic environments. )
o I =| 1
= | {} o |
< Use calibrated instrument gain to determine
o . . — , I
< energy deposited pepixel per frame from I | Obtain histograms for each morenergetic
L noise.Make histogranof deposited energy | | fun of number of pixels vs deposited energy |
n Observed instrument response is fit with a linear combination of the simulated rearogetic
g responses. Determine coefficients with optimization scheme.
e NS
o The electron energy spectra obtained from the coefficients used to fit the simulations to the instrument

iImages. Compare spectrum to-tsoard EPD data.
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Energy Deposited in SSI Flight Data

Original Galiled5SImage

Orbit: 33

Target: Europa

Image Timel8-Janr2002 15:1632
Duration: 195.83 ms + 8.667 s
Fills 400 x 240 pixels

Galileo SSI 3413r: Dist. from Moon vs DN
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Use of Geant4: Modeling Geometry

. Stadz2y SO |t ex
FIELD {OFGS LYF3IAYy3I 9

APERTURE
CORRECTOR SECONDARY CORRECTOR _
ELEMENTS MIRROR ELEMENTS H 1
PRIMARY Space Science Reviews, Vol. 60,
MIRROR SHUTTER
% cco RAD!ATBFP. ! )
) A——
QUARTZ L \[ ) / PLATE
CLEAR
APERTURE e T
DEPLOYABL == et vt !
APERTURE
COVER B
TANTALUM
RADIATION
SR = — ‘ / SHIELDING
| |
/ © FQCAL POINT

ELECTRONICS CHASSIS
QUARTZ
RADIATION PLUG

O

k B

= — o Detector construction in
= Geant4 of SSI geometry,
visualization irHepRep
2017 G4SUW 16

Image credit: A. Carlton



10 Geant4 simulations of 1E9 50 MeV
electrons

A Example of building a histogram from Geant4
simulation results: energy deposited on the
detector

{5050 G4 simulation histogram of energy deposited
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Mono-energetic Simulations with SSI

A In order to build a set of basis functions for
fitting the flight data, our goal Is to distinguish
the shapes of the energy deposition curves
from mono-energetic simulations.

G4 simulation histograms
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Number of Particles

Findinggo date

A Most energy depositions are due to ~&éVto ~1 MeV
electrons, no matter what the incident electron energy

A Start to see a lot more energy depositions for 50 MeV
than for 10MeV

I Maybe able to determine an integral channel from the SSI
somewhere between 10 and 50 MeV
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